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Abstract
It has been shown previously that the displacements of the vo-
cal folds during phonation can be algorithmically derived from
recorded voice signals. A graph of the displacements of the
left and right vocal folds represents a phase-space portrait of
a voice signal. The vocal fold oscillation (VFO) trajectory in
the phase space carries a wealth of information, which can be
measured from statistical, information-theoretic and other per-
spectives. In this paper, we use several such measurements for
detecting COVID-19 from voice. We are also able to derive in-
sights about the changes that may have occurred in the voice
signal as a result of COVID-19 infection.
Index Terms: Vocal fold oscillations, Entropy, Information,
Covid-19, Phase-space trajectories

1. Introduction
It is well known that speech changes in response to many fac-
tors that affect the vocal production mechanism of the speaker
[1, 2]. Respiratory illnesses, for example, form a group of in-
fluencing factors that cause significant changes in the voices of
individuals with these diseases. Characterizing these changes
objectively is useful in building systems that can detect these
conditions from voice automatically.

Since 2020 (from shortly after the declaration of COVID-
19 as a global pandemic by the World Health Organization),
researchers across the globe have attempted to create technolo-
gies to detect COVID-19 using automated information process-
ing and multimedia analysis tools, including voice. These ef-
forts continue, and the search for the best methods and tools to
detect COVID-19 from voice is still ongoing.

Some groups have approached the problem from a data-
based inference perspective [3, 4, 5], hoping to discover rep-
resentations automatically by pairing audio with labels within
machine learning and deep learning frameworks. Others, e.g.
[6], opt for an analysis-by-synthesis approach, which aims to
understand a phenomenon by creating a model that can repro-
duce it. Potentially explainable inferences can subsequently be
made by analyzing the behavior of the synthesis model.

The work in this paper is based on an analysis-by-synthesis
approach. Recently, [6] proposed an algorithm called Adjoint
Least Squares (ADLES) for deriving the oscillations of the left
and right vocal folds from recorded speech. The derivation was
based on a physical model of the vocal folds introduced in [7].
This model emulates the asymmetric vibrations of the left and
right vocal folds during phonation. These variables comprise a
dynamical system, which we elaborate on in Section 3.1.

We use the ADLES algorithm to directly estimate the solu-
tions to the dynamical system. Based on the solutions of this
model, we study the vocal fold oscillations of speakers affected

by COVID-19. Recent prior work has added sophistication to
the aforementioned vocal fold models, by modeling the inter-
action between the vocal fold oscillations and the resonances
of the vocal tract [8]. To our knowledge, this is the first work
that applies this more sophisticated model on real data to study
a disease’s effect on vocal fold oscillations. It is therefore our
goal to use this updated model to detect COVID-19.

In this paper we perform comparative analysis of the phona-
tions from patients who test positive or show symptoms of
covid, against the phonations of healthy speakers. Through
this analysis we can derive deeper insights into the signatures
of COVID-19 in voice. For our analysis we use a collection of
statistical and information-theoretic measurements that charac-
terize the phase-space trajectories of the mathematical models
used.

The phase-space of a dynamical system is the space whose
coordinates are its state variables. A single trajectory through
this space would correspond to the solutions of the model for
one recording. We show that our measurements of the trajec-
tories can not only provide insights into the manner in which
COVID-19 affects voice, but can also comprise powerful de-
scriptors that can be used to detect COVID-19 from voice.

We find that some features vary significantly between the
positive and negative populations, including the mean displace-
ment and mean velocity of only one of the vocal folds. This
is a notable result, and intuitively follows our understanding of
voice pathology, because it has been shown that diseases can
have asymmetric effects on the vocal folds [9]. We also find
a large degree of separation between positive and negative pa-
tients in the information-theoretic measurements.

In addition to examining populations based on test results,
we examine the difference in values for individuals that are
symptomatic vs. asymptomatic, as test results do not always re-
flect the reality of whether an individual has the illness. We find
that a number of features differ significantly between the symp-
tomatic and asymptomatic populations, mostly in the time-
series of velocity values for the vocal folds. The significant fea-
tures include mean displacement of right vocal fold, the mean
velocity of left vocal fold, the regression intercept of vocal fold
velocity, and amplitude ratio of vocal fold velocities.

2. Related work
A growing body of evidence suggests that voice analysis can
serve as a reliable and non-invasive tool for COVID-19 detec-
tion. Previous studies have shown that COVID-19 can affect
the respiratory system, leading to changes in vocal characteris-
tics such as pitch, loudness, and phonation time [10, 11].

At the time of writing this paper, several approaches to de-
tecting COVID-19 from voice have been published. However,



most approaches [12, 13] use data-driven machine learning and
deep learning models. The features that have been explored
are either standard formats such as spectrograms or standard
signal processing-based features obtained from toolkits such as
OpenSmile [14].

Research on the use of phonation models to estimate the os-
cillation of vocal folds from recorded speech is relatively new.
In fact, the Adjoint Least Squares Estimation (ADLES) algo-
rithm [15] proposed in 2020 was the first to enable such estima-
tion. In later work [8, 16], the vocal fold model was combined
with a vocal tract model with a proposed ADLES-VFT (Adjoint
Least Squares—Vocal Folds-Tract) algorithm which was based
on joint modeling of the oscillation of the vocal fold and the
effect of the vocal tract on it.

The viability of phase-space portraits such as those derived
by ADLES has been demonstrated in prior studies for detecting
multiple diseases. One study used higher order statistics de-
rived from parameters of the dynamical system, in addition to
Lyapunov and Hurst exponents derived from the phase space
trajectories of the individualized asymmetric models. These
techniques were used to directly detect Amyotrophic Lateral
Sclerosis (ALS) from voice with an ROC-AUC of 0.99 [17].

There are also prior studies that have tried to detect COVID-
19 from voice using the vocal fold oscillations. The analysis
approach, however, has varied. Some works such as [18] have
used the VFO trajectory to develop simple machine-learning de-
tectors that achieved an accuracy of 91.6 in detecting COVID-
19 from voice signals. In another study, the authors in [3] used
the ADLES-estimated glottal flows as features to CNN-based
two-step attention neural networks. The neural model detects
differences in the estimated and actual glottal flows and predicts
two classes corresponding to COVID-19 positive and negative
cases. This achieved 0.9 ROC-AUC (normalized) on clinically
collected vowel sounds.

Our work is different from any others in that we do not use
machine-learning classifiers, and so our work is much more in-
terpretable and involves domain knowledge. However we do
not sacrifice the ability to detect COVID-19, which is made
more effective through our features. It also differs from ear-
lier attempts at analyzing vocal fold oscillations which applied
ML techniques to their phase-space measurements in that, in ad-
dition to considering more detailed vocal-tract effects on vocal
fold oscillations, captured through the ADLES-VFT algorithm,
unlike them, we attempt to explicitly statistically relate these to
perceptually meaningful characterizations of voice.

3. Methodology
3.1. Vocal fold oscillation model

Figure 1: Diagram of the one-mass body-cover model for vocal
folds. The lateral displacements at the midpoint of the left and
right vocal folds are denoted as ξl and ξr , and ξ0 represents the
half glottal width at rest.

We adopt the specific formulation for the one-mass asym-
metric model from [19]. Following Figure 1, we denote the
center-line of the glottis as the z-axis. At the midpoint (z = 0)
of the thickness of the vocal folds, the left and right vocal folds
oscillate with lateral displacement ξl and ξr , resulting in a pair
of coupled Van der Pol oscillators:

ξ̈r + β(1 + ξ2r)ξ̇r + ξr −
∆

2
ξr = α(ξ̇r + ξ̇l)

ξ̈l + β(1 + ξ2l )ξ̇l + ξl +
∆

2
ξl = α(ξ̇r + ξ̇l) (1)

where β is the coefficient incorporating mass, spring and
damping coefficients, α is the glottal pressure coupling coef-
ficient, and ∆ is the asymmetry coefficient. For a male adult
with normal voice, the reference values for the model parame-
ters (from clinical measurements) are usually approximately set
to α = 0.5, β = 0.32 and ∆ = 0.

The solution of these models using the vocal folds-tract al-
gorithm suggested in [8] gives us phase space trajectories for
the motion of both vocal folds in their displacement and ve-
locity spaces. Examples of such trajectories for COVID-19-
positive and normal subjects, derived from the vocalizations of
the speakers, are shown in Fig. 2.

Figure 2: Examples of displacement phase-space trajectories
(right vs. left vocal fold) for patients who tested negative (top
row) and positive (bottom row) for COVID-19.

From these trajectories, we derive various measurements
that characterize them in a discriminative manner. These mea-
surements are described below.

3.2. Measurements of phase-space trajectories

3.2.1. Features from a statistical perspective

In addition to the mean displacements and velocities, we use the
following features for our analysis. Note that we use displace-
ments ξl and ξr in the definitions below for brevity, but we can
just as easily replace the left and right displacements with ve-
locities ξ̇l and ξ̇r . We also incorporate velocity measurements
in the feature calculations.

1. Amplitudes of displacement of the left and right vocal
fold: This represents the maximum distance between the
equilibrium position and the maximum displacement of the
vocal fold during one cycle of oscillation, and is measured in
millimeters (mm). Denoting the amplitudes as Al and Ar , we
have Al =

1
2
(ξl,max−ξl,min) and Ar = 1

2
(ξr,max−ξr,min)

respectively, where ξr,max, ξl,max and ξr,min, ξl,min are the



maximum and minimum displacement of the right and left
vocal folds respectively.

2. Amplitude ratio: This represents the relationship between
the amplitudes of left and right vocal fold. The ratio is de-
fined as Al

Ar
.

3. Slope and intercept of the regression line fitted to the dis-
placement data points of the left and right vocal folds:
These are computed as:

b =

∑n
i=1(ξli − ξ̄l)(ξr,i − ξ̄r)∑n

i=1(ξl,i − ξ̄l)2
(2)

where b is the slope of the regression line, ξli and ξr,i are the
coordinates of the ith data point for the left and right vocal
folds, respectively, and ξ̄l and ξ̄r are the sample means of the
left and right vocal fold displacements, respectively. Positive
values for the slope indicate a positive correlation between
the left and right vocal folds. Likewise, negative values indi-
cate negative correlation.
The intercept a of the regression line fitted to the displace-
ment data points is given by a = ξ̄r − bξ̄l. It represents the
value of the right vocal fold displacement when the left vocal
fold displacement is zero (and vice-versa when the dispal-
cement axes are interchanged).

3.2.2. Features from an information-theoretic perspective

Recall that our data is originally a time-series of continuous val-
ues that represents the displacements (or velocities) of the vocal
folds. To compute the information-theoretic measurements, we
first discretize the data. To compute the thresholds for bins we
concatenate all the time-series for the left and right displace-
ments (or velocities), and determine 1000 evenly-spaced bins
based on the range of the data. The continuous values for each
time-series are then replaced with the ID of the bin that they fall
into. To compute a distribution from a time-series, we obtain
the counts of observations falling into each bin, and normalize
them by the total number of observations. After these steps, we
can now calculate the following measures.

1. Entropy: This is computed individually for each vocal fold,
and indicates the level of uncertainty about a message denot-
ing a value from the distribution of the vocal fold displace-
ments. The computation is computed as:

H(ξl) = −
n∑

i=1

p(ξl,i) log p(ξl,i) (3)

2. Mutual Information: This gives an indication on the
amount of information that observing one random variable
gives us on the other random variable. In our application
this would entail the extent of information contained about
one vocal fold trajectory by the other. Given the asymmetry
of effects in patients with vocal fold pathology, it is a good
candidate to capture differences between individuals in our
sub-populations. It is computed as:

I(ξl; ξr) =

n∑
i=1

n∑
i=1

Pξl,ξr (ξl,i, ξr,i) log
Pξl,ξr (ξl,i, ξr,i)

Pξl(ξl,i)Pξr (ξr,i)

(4)
where Pξl,ξr , Pξl , and Pξr denote the probability mass func-
tions for the joint distribution, marginal of ξl, and marginal
of ξr , respectively.

3. Kullback-Leibler (KL) Divergence: This gives us an indi-
cation about the difference between the distributions of the
left and right vocal fold trajectories. In our application we
might expect the KL divergence to be more different in indi-
viduals who have COVID-19. It is computed as:

DKL(Pξl ||Pξr ) =

n∑
i=1

Pξl(ξl,i) log
Pξl,i(ξl,i)

Pξr (ξl,i)
(5)

3.3. Detecting differences between populations

We want to determine whether these measurements
can differentiate between positive/negative or symp-
tomatic/asymptomatic populations. To test this we use
the Student’s-t test for difference of means, where the t statistic
is

t =
ξ̄l − ξ̄r

sp ·
√

1
n1

+ 1
n2

where the pooled standard deviation sp is defined as:

sp =

√
(n1 − 1)s2ξl + (n2 − 1)s2ξr

n1 + n2 − 2

We determined that the equal variance assumption was ap-
propriate in our situation. Through this test, we can detect
whether the features derived from the phase-space trajecto-
ries are significantly different between individuals with pos-
itive/negative test results, and those who are symptomatic vs
asymptomatic.

4. Experiments
4.1. Data

In this paper we use a proprietary dataset from Hematico LLC
and Paradigm Biologix, both US-based biomedical and biotech-
nology companies specializing in healthcare, and another from
Merlin, a corporation based out of Santiago Chile. The record-
ings were obtained from hospitals in Philippines and Chile sep-
arately.

The dataset includes recordings of patients speaking the
days of the week (DOW), and coughing. All subjects under-
went PCR tests. The recordings correspond to 140 positive
test results and 100 negative test results. There is also an in-
dication of whether the patient was symptomatic at the time of
recording. There was no demographic information of the pa-
tients such as age or gender. The breakdown of test results and
symptomaticity is as follows: 100 Positive - Symptomatic, 40
Positive - Asymptomatic, 50 Negative - Symptomatic, and 50
Negative - Asymptomatic.

4.2. Implementation Details

The features listed in Section 3.2 were implemented in Python,
using the numpy, scipy, and pyinform packages. We ran all
experiments on a compute-cluster using 8 x86-64 Intel Xeon
CPU’s. The VFO trajectories took on the order of 10 hours to
run. The calculation of features and the significance testing took
on the order of 15 minutes to run in total. Code is available and
anonymized1. Vocal fold oscillation trajectories were calculated

1https://anonymous.4open.science/r/PhonationModeling-
041B/README.md



with code released from [6]2.

5. Results
We conducted the t-test as defined above to detect difference of
means in positive and negative populations. We ran the signifi-
cance tests between positive and negative defined in 2 different
ways as previously mentioned : a) where positive and negative
correspond to the results of the COVID-19 test result, and b)
where positive corresponds to whether a patient is symptomatic
or asymptomatic regardless of the COVID-19 test result.

In Table 1 we show the results for the significance tests
between positive and negative test results. In this table – and
all others – the first column indicates the time-series trajectory
that we analyze, which is either the displacement or velocity of
the vocal folds. The second column shows whether the trajec-
tory was estimated based on a recording of the day-of-the-week
(DOW) or a recording of a cough. The third column shows the
feature derived over the trajectory. The fourth column shows
the p-value for the significance test.

Note that in this table and the following tables, we only
report the tests that showed significant results at a level of α =
0.05. We performed the tests between all features for all the
recording types and time-series types. Not all of these proved to
differentiate the populations, so we only report those that were
significant.

Recall from the introduction that voice pathology is often
characterized by differences in function between the two vocal
folds. Our statistical measures reflect this, as the mean values
for displacement and velocity of the right fold are significantly
different in the positive/negative analysis.

Time-series Type Recording-Type Feature p-value
Displacement DOW Mean Right Fold 0.027

Velocity DOW Mean Right Fold 0.041

Table 1: Comparison of statistical measures between positive
and negative test result patients

In Table 2, we look at the differences between the symp-
tomatic and asymptomatic populations. We see slightly differ-
ent effects compared to the positive/negative test result popula-
tions. The mean displacement and velocity of the vocal folds are
still relevant, showing that these features are useful in a number
of applications. We also see a number of other features derived
from the velocity time-series that are more discriminative for
the symptomatic sub-population.

Time-series Type Recording-Type Feature p-value
Displacement Cough Mean Right Fold 0.037

Velocity Cough Mean Left Fold 0.034
Velocity Cough Regression Intercept 0.033
Velocity DOW Amplitude Ratio 0.038

Table 2: Comparison of statistical measures between symp-
tomatic and asymptomatic patients

In Table 3 we show the results for the information-theoretic
measurements of the populations differentiated by test results.
Our experiments show that the information-theoretic measure-
ments are very discriminative, and almost all the features show
the ability to differentiate.

2https://github.com/waynezv/PhonationModeling

Time-series Type Recording-Type Feature p-value
Displacement DOW Entropy Right Fold 0.001
Displacement DOW Entropy Left Fold 0.001
Displacement DOW Mutual Information 0.002
Displacement Cough Entropy Right Fold 0.008
Displacement Cough Entropy Left Fold 0.008

Velocity DOW Entropy Right Fold 0.0
Velocity DOW Entropy Left Fold 0.0
Velocity Cough Entropy Right Fold 0.002
Velocity Cough Entropy Left Fold 0.002
Velocity Cough Mutual Information 0.05
Velocity Cough KL Divergence 0.0

Table 3: Comparison of information-theoretic measures be-
tween positive and negative patients

Finally in Table 4 we examine the differences
in information-theoretic measurements for the symp-
tomatic/asymptomatic populations.

Time-series Type Recording-Type Feature p-value
Displacement DOW Entropy Right Fold 0.011
Displacement DOW Entropy Left Fold 0.011
Displacement Cough Entropy Right Fold 0.0
Displacement Cough Entropy Left Fold 0.0
Displacement Cough Mutual Information 0.0

Velocity DOW Entropy Right Fold 0.012
Velocity DOW Entropy Left Fold 0.012
Velocity Cough Entropy Right Fold 0.0
Velocity Cough Entropy Left Fold 0.0
Velocity Cough Mutual Information 0.004

Table 4: Comparison of information-theoretic measures be-
tween symptomatic and asymptomatic patients

6. Observations and Conclusion
From the tables, we observe some interesting trends. Of the
various “simple” statistical measures tested, the simplest – the
mean – related significantly to both quantities of interest. How-
ever, the correlation between the two trajectories, quantified by
the regression fit and amplitude ratio, better matched the pres-
ence of symptoms. On the other hand, the entropic measures
showed a clear relation to both symptoms and test results. All
these show that detailed characterizations of vocal fold oscilla-
tions are potentially diagnostic of COVID-19 and its symptoms.

However, more interesting than these results are the types of
sounds for the results were obtained on. Prior studies on VFO
have examined extended vowel sounds, where steady state may
be achieved and the vocal folds are likely to take on a steady
pattern. In this study, the primary prompts were coughs and
recitations of the days of the week, two complex vocal actions
that do not allow the vocal folds to fall into steady state move-
ments. Cough sounds, in particular, are unlikely candidates for
showing patterns of vocal fold behavior. Nonetheless, our re-
sults show that pathologies such as COVID-19 influence vocal
folds to a degree that the resulting aberrations in their patterns
of movement can be measured directly from the voice signal,
even in complex vocal activities such as coughs and chanting.
This could extend to potentially any speech or vocal activity, an
we now have the computational models and means to measure
these aberrations directly from voice.

We believe that this opens up an entirely new avenue of
investigation into voice-based analysis of diagnosis of voice-
affecting pathologies. We continue to investigate this topic,
both through further improving computational models for cap-
turing vocal tract dynamics from voice, and by collaborating
with doctors and medical researchers in relating these to ill-
nesses that are known, or suspected to affect any part of the
voice-production process as one of their effects.
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